
The Canadian Journal of Statistics 1
Vol. 00, No. 00, 2021, Pages 000–000
La revue canadienne de statistique

A structured brain-wide and genome-wide
association study using ADNI PET images
Yanming LI1* , Bin NAN2, and Ji ZHU3, for the Alzheimer’s Disease Neuroimaging
Initiative†

1Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS,
U.S.A.
2Department of Statistics, University of California at Irvine, Irvine, CA, U.S.A.
3Department of Statistics, University of Michigan, Ann Arbor, MI, U.S.A.

Key words and phrases: Brain-wide and genome-wide association studies; multivariate sparse group
lasso; structured high-dimensional multivariate linear regression; ultrahigh-dimensional predictors;
ultrahigh-dimensional responses.

MSC 2010: Primary 62H20; secondary 62J07.

Abstract: A multistage variable selection method is introduced for detecting association signals in structured
brain-wide and genome-wide association studies (brain-GWAS). Compared to conventional methods that
link one voxel to one single nucleotide polymorphism (SNP), our approach is more efficient and powerful
in selecting the important signals by integrating anatomic and gene grouping structures in the brain
and the genome, respectively. It avoids resorting to a large number of multiple comparisons while
effectively controlling the false discoveries. Validity of the proposed approach is demonstrated by both
theoretical investigation and numerical simulations. We apply our proposed method to a brain-GWAS
using Alzheimer’s Disease Neuroimaging Initiative positron emission tomography (ADNI PET) imaging
and genomic data. We confirm previously reported association signals and also uncover several novel SNPs
and genes that are either associated with brain glucose metabolism or have their association significantly
modified by Alzheimer’s disease status. The Canadian Journal of Statistics 00: 000–000; 2021 © 2021
Statistical Society of Canada
Résumé: Les auteurs présentent une méthode de sélection de variables à plusieurs stades afin de
détecter les signaux dans les études d’association pangénomiques structurées pour l’ensemble du cerveau
(EAP-cerveau). En comparaison des méthodes conventionnelles liant un voxel à un SNP, l’approche pro-
posée offre une efficacité et une puissance accrues en intégrant les structures de groupes anatomiques dans
le cerveau et génétiques dans le génome. Cette approche permet d’éviter d’avoir recours à de nombreuses
comparaisons multiples tout en contrôlant pour le taux de fausses découvertes. Les auteurs démontrent
la validité de leur approche d’un point de vue théorique, puis numériquement par des simulations. Ils
utilisent leur méthode avec des données EAP-cerveau de tomographie par émission de positons provenant
de l’initiative d’imagerie médicale pour la maladie d’Alzheimer, ainsi que des données génomiques. Ils
confirment les signaux d’association précédemment rapportés et découvrent plusieurs nouveaux SNP et
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gènes qui sont associés avec le métabolisme du glucose dans le cerveau, ou encore qui voient leur association
modifiée significativement par la maladie d’Alzheimer. La revue canadienne de statistique 00: 000–000;
2021 © 2021 Société statistique du Canada

1. INTRODUCTION

Human brain structures are highly heritable (Peper et al. 2007; Braber et al. 2013). The association
patterns between the brain and the genome furnish important information about the development
and progression mechanisms of chronic cognitive diseases such as Alzheimer’s disease (AD)
(McKhann et al. 2011). Modern technologies such as the neuroimaging scan and next-generation
sequencing enable us to look at such association patterns at the resolutions of single voxel
and single-nucleotide polymorphism (SNP) scales. However, given the enormous numbers of
variables in both imaging data (∼ millions of voxels) and genotype data (∼ millions of SNPs), it is
extremely challenging to detect the true association signals immersed in the ultrahigh-dimensional
noise. Many current brain-GWAS studies look at a single-voxel-to-single-SNP pair at a time
(Stein et al. 2010a). Such single-voxel-to-single-SNP (or pairwise) approaches suffer from very
limited power in detecting the true signals, mostly due to the astronomical number of multiple
comparisons needed to control the false-positive discoveries (Stein et al. 2010a; Ge et al. 2012).

Marginal pairwise approaches treat different voxel-to-SNP pairs as independent. A joint
model with all voxels and all SNPs considered simultaneously is often of more scientific interest.
Compared to marginal pairwise approaches, joint modelling has enormous potential to improve
the power of detecting association signals. Multivariate linear regression is a common technique
for jointly modelling multiple responses and multiple predictors. However, such a model is ill
posed when the dimensions of responses and predictors are both greater than the sample size as
the solution is not unique. Another limitation of marginal pairwise approaches is that they fail
to incorporate the intrinsic biological grouping structures, such as anatomical regions of interest
(ROIs) in the brain and genes in the genome. Figure 1 illustrates an atlas of anatomical ROIs and
their positions in the brain.

Li, Nan & Zhu (2015) introduced a multivariate sparse group lasso (MSGLasso), a reg-
ularization method for high-dimensional multivariate-response and multiple-predictor linear
regression with grouping structures on both the responses and the predictors. They show that the
power to detect the true association signals can be significantly increased by incorporating the
grouping structures. However, it is computationally infeasible to fit the MSGLasso directly with
ultrahigh-dimensional neuroimaging and genomic data, where the numbers of responses and
predictors are of exponential orders of the sample size. As in our brain-GWAS, each response
image consists of Q≈ 350,000 voxels, and each genome consists of P≈ 560,000 SNPs, while we

FIGURE 1: Illustration of mapping Brodmann atlas of ROIs onto segmented PET images. ROIs are
highlighted with colors. (a) Sagittal slice at midline. (b) Coronal slice at midline. (c) Axial slice at midline.
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only have n= 373 samples. Furthermore, conditions that guarantee selection consistency for the
MSGLasso may fail to hold for ultrahigh-dimensional cases (Li, Hong & Li 2019).

To address these challenges, we propose a multistage variable selection method for settings
with ultrahigh-dimensional responses and ultrahigh-dimensional predictors, both with grouping
structures. The proposed method consists of two selection stages. The first selection stage aims to
remove unimportant response-to-predictor group pairs. The second stage then selects important
individual-level signals only within the selected group pairs. Stability selection (Meinshausen &
Bühlmann 2010) is used in both stages to enhance the stability of the selection and control false
positives.

The contribution of our proposed method to variable selection is twofold. First, it
is a joint modelling approach that involves both ultrahigh-dimensional responses and
ultrahigh-dimensional predictors. It avoids resorting to a huge number of downstream hypothesis
tests and multiple comparisons. Second, it is a structured approach that takes into consideration
the grouping structures of both the responses and the predictors. These unique characteristics
enable our proposed method to significantly increase the power to identify true signals and, at
the same time, to reduce the number of false discoveries.

The proposed method is particularly useful in conducting structured brain-wide
and genome-wide association studies (brain-GWAS). In this article, we applied it to
fluorine-fluorodeoxyglucose positron emission tomography (FDG-PET) neuroimaging data and
DNA genotyping data collected from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database for detecting association signals between voxel-level neuroimaging phenotypes and
genetic variants. FDG-PET images measure brain glucose metabolism and can reflect changes
in the brain metabolic pattern as diagnostics of AD progression (Mosconi 2005). We emphasize
that the proposed method is applicable to a wide range of brain-GWAS studies with different
imaging modalities or molecular data types, such as functional magnetic resonance imaging
(fMRI), methylation, copy number variation and mitochondrial DNA profiles, or with different
grouping structures, such as neuroimages grouped by functional regions, cortices and genomic
profiles grouped by gene pathways, and protein networks. To the best of our knowledge, our
work is the first report to conduct a structured brain-GWAS at voxel and SNP levels using a
joint model. Compared to the pairwise approaches (Stein et al. 2010a; Ge et al. 2012) and other
marginal approaches such as gene-based analysis (Hibar et al. 2011) that regress each single
voxel on a set of SNPs within a gene, our approach is able to identify more genetic signals
that are either associated with brain glucose metabolism or have their association significantly
modified by AD status. Computationally, our proposed method is generally more efficient
compared to the pairwise approaches (Stein et al. 2010a). The major computational cost saving
comes from the dimension reduction in the first selection stage and the fact that we only focus
on the selected ROI-to-gene pairs in the downstream analyses.

2. MODEL AND METHOD

Details of our proposed model and method are provided in this section as background prior
to conducting a structured brain-GWAS for the ADNI PET imaging and genomic data. The
main procedure consists of two selection stages in a multivariate linear regression model with
the ultimate goal being to efficiently and jointly select the important association signals linking
ultrahigh-dimensional neuroimaging responses and genetic DNA predictors.

Let Y be the n×Q matrix of voxel-level neuroimaging responses and X be the n×P matrix
of SNP genotypes. We consider the following multivariate linear regression model

Y = I𝜷T
0 + XBX + Iad𝜷

T
ad + Imci𝜷

T
mci + (X × Iad)BXad + (X × Imci)BXmci

+ Age𝜷T
age + Sex𝜷T

sex + E, (1)
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where I is a length-n vector with entries 1; Iad and Imci are length-n indicators for AD and mild
cognitive impairment (MCI) subjects, respectively; X × Iad and X × Imci are n×P matrices of
interaction terms between genetic predictors and disease status, respectively; and Age and Sex
are length-n covariate vectors encoding age and sex, respectively. Here, 𝜷0 is a length-Q grand
intercept vector; 𝜷ad = IQ𝛽ad, 𝜷mci = IQ𝛽mci, 𝜷age = IQ𝛽age and 𝜷sex = IQ𝛽sex are coefficient
vectors for AD indicator, MCI indicator, age and sex, respectively, where IQ is a length-Q
vector with entries 1, and B, BXad and BXmci are P×Q regression coefficient matrices for
genetic, genetic–AD interaction and genetic–MCI interaction effects, respectively. The symbol
E represents an n×Q matrix of noise terms arising from a Q-dimensional multivariate normal
distribution with zero means. The superscript T represents transpose of a matrix or vector.

When the variables in X and Y are centered, 𝜷0 is zero, and the model specified in Eq. (1)
reduces to

Y = XB + E (2)

with X = (X, Iad, Imci,X × Iad,X × Imci,Age,Sex) being the grand predictor matrix and B =
(BT

X ,𝜷ad,𝜷mci,B
T
Xad,B

T
Xmci, 𝜷age, 𝜷sex)T being the grand coefficient matrix. Here, we do not

require the selection to respect the model hierarchy, that is, an interaction term can be selected
in the final model even if the corresponding genetic main effect is not selected.

When the imaging responses Y and genetic predictors X are grouped into ROIs and genes,
respectively, the groups automatically induce a block grouping structure on BX , with row blocks
corresponding to gene groups and column blocks corresponding to ROI groups. These same
groups also induce the same gene grouping structures on X × Iad and X × Imci and the same block
grouping structure on BXad and BXmci. We assume that association signals are sparse at both the
group and individual levels. That is, (i) each response group only associates with, at most, a few
predictor groups, and (ii) each important voxel only associates with a small number of SNPs
(SNP–disease interactions) compared to the sample size. In the following analyses, we assume
that the variables Iad, Imci, Age and Sex belonging to the model specified in Eq. (2) each form a
group in their own right.

2.1. First Stage: Selecting Important ROI-to-Gene Blocks
In the first stage, we use the multivariate group lasso (Yuan & Lin 2006; Li, Nan & Zhu 2015)
to select the important ROI-to-gene pairs. This stage serves as a screening step, ruling out the
unimportant ROI-to-gene pairs by shrinking the corresponding association blocks to zero. To
reduce the dimensionality of the input variables while retaining the ROI and gene grouping
structures, we use the major principle components (PCs) within each ROI or gene group instead
of using the voxel intensities and SNP genotypes. Note that PCs are linear combinations of
the original variables; therefore, a zero-association block between the original variables implies
a zero block between corresponding PCs. We interpret the selected PC association blocks as
evidence of the associations between their representative ROIs and genes. The advantage of using
the PCs is twofold. First, it helps to reduce the input dimensionality while keeping the grouping
structure and essential information within each group and therefore improves the efficiency
of group-level selection. Second, as PCs are orthogonal (independent) to each other, using
them avoids the complications arising from collinearity between predictors or from overlapping
grouping structures as genes often overlap with each other.

Let  = {1,… ,R} be the index set of ROI groups and  = {1,… ,G} be the index set of
generic predictor groups–that is, gene, disease indicator, gene–disease interaction and other
covariate groups. For ease of notation, when no confusion is introduced, we will simply refer
hereafter to each generic predictor group as a “gene group.” Denote by ⊗  the induced
block-grouping structure on the regression coefficient matrix. For each r ∈ , denote by Pr

Y the
major PCs of the responses in the rth group. Let PY = (P1

Y ,… ,PR
Y ) be the new response matrix
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of PCs. Similarly, for each g ∈ , denote by Pg
X the major PCs of the predictors in the gth group.

Let PX = (P1
X ,… ,PG

X ) be the new predictor matrix of PCs. We apply the multivariate group lasso
to the PC matrices to select important ROI-to-gene associations by solving the optimization
problem:

arg min
𝚪

1
2n

||PY − PX𝚪||22 + 𝜆1

∑
rg∈⊗

𝜔1∕2
rg ||𝚪rg||2, (3)

where || ⋅ ||2 denotes the l2 norm. Here, 𝚪 is the regression coefficient matrix between the PC
matrices, and 𝚪rg is a submatrix block between rth ROI and gth gene group. The group lasso

penalty
∑

rg∈⊗𝜔
1∕2
rg ||𝚪rg||2 aims to shrink the unimportant 𝚪rg blocks to zero, and 𝜔rg is a

nonnegative weight assigned to 𝚪rg, r = 1, … , R, g= 1, … , G. In our brain-wide GWAS, we

use 𝜔rg =
√

v × s (Yuan & Lin 2006; Silver, Montana & ADNI 2012), where v is the number of
PCs in the rth ROI group, and s is the number of PCs in the gth gene group. We set 𝜔rg = 0 if
we do not want to penalize the group with label rg. The tuning parameter 𝜆1 controls the sparsity
of the selected ROI-to-gene blocks.

2.2. Second Stage: Selecting Important Voxel-to-SNP Signals
For each nonzero 𝚪rg selected at the first stage, the corresponding ROI-to-gene pairs are passed to
the second stage. In the second stage, we narrow our focus to the associations for those same pairs
at voxel-to-SNP levels. For each selected ROI-to-gene pair, we solve the following multivariate
lasso problem (Friedman, Hastie & Tibshirani 2010; Kohannim et al. 2012; Li, Nan & Zhu 2015),

arg min
Brg

1
2n

||Yr − XgBrg||22 + 𝜆2

∑
𝛽𝑗k∈Brg

𝜔𝑗k|𝛽𝑗k|, (4)

where the response variables Yr are voxel-level intensity scores in the selected rth ROI, the
predictors Xg are SNP genotypes (or SNP–disease interactions) belonging to the selected
associated gth gene group, and Brg is the corresponding regression coefficient block. Here,
𝜆2 is a tuning parameter controlling the within-group individual-level sparsity, and 𝜔𝑗k is a
preassigned nonnegative weight corresponding to 𝛽𝑗k. If 𝜔𝑗k = 0, then 𝛽𝑗k will not be penalized.
In our ANDI data analysis, we set 𝜔𝑗k = 1 for all 𝛽𝑗ks that corresponds to either an SNP main
effect or an SNP-to-disease interaction effect.

2.3. Stability Selection and Control of False Discoveries
Stability selection (Meinshausen & Bühlmann 2010) is employed in both stages. We fit the
models identified in Eqs. (3) and (4) multiple times, say K, on randomly resampled (bootstrapped
or subsampled) datasets using prefixed tuning parameters. Then, an important signal (either
group-level or individual-level) is eventually selected if its frequency of being selected among
the total K times of selections exceeds a certain specified threshold.

The advantages of stability selection are threefold. First, it can reduce the random variation
in the data that arises from sampling or measurement error. Second, it saves the computing
cost associated with choosing the tuning parameters 𝜆1 and 𝜆2. Instead of using cross-validation
to select optimal tuning parameters, stability selection prescribes using a fixed set of tuning
parameter values on rerandomized datasets. As long as the proposed fixed tuning parameter
values belong to a reasonable range, that is, they are neither too large so that they shrink almost
everything to zeros nor too small so that they barely shrink anything, the corresponding variable
selection results are quite stable. Figure S3 in the Supplementary Materials illustrates that the
top signals identified in the analysis of the ADNI PET imaging and genetic data are robustly
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selected when using bootstrapped samples and different values of the tuning parameters. Stability
selection can be easily implemented and run on multicore computing clusters and therefore is
much more efficient computationally. Third, stability selection provides a quantitative way to
govern the number of false discoveries, an issue that we will discuss in detail in Section 4.

2.4. Selection Properties
We show that the proposed structured brain-GWAS method achieves certain oracle bounds for
selection, which are the selection bounds one could obtain as if the true model were given
(Bickel, Ritov & Tsybakov 2009).

First, we introduce some notations. Let 1(B) = {𝑗k ∶ |𝛽𝑗k| ≠ 0} be the index set of
nonzero elements in B, and let 2(B) = {rg ∈ ⊗ , ||Brg||2 ≠ 0} be the index set of
nonzero groups. Define M1(B) =

∑
𝑗kI(𝛽𝑗k ≠ 0) = |1(B)| and M2(B) =

∑
rg∈⊗I(||Brg||2 ≠

0) = |2(B)|. Denote by qr the number of voxels in the rth ROI group, and denote by pg the
number of predictors in the gth gene group. We assume that the predictors have a common
marginal variance 𝜎2.

Next, we provide assumptions for the results summarized in Theorem 1.

(i) Group-level generalized sparse condition (gGSC): For any 𝜂1 ≥ 0, there exists a nonempty
set  ⊂ ⊗ , such that

∑
rg∈||Brg||2 ≤ 𝜂1.

(ii) Sparse Riesz condition (SRC): There exist spectrum bounds 0< c* < c* <∞, such that
for any 1 ⊂ {1,… ,G} with rank q* and any nonzero vector 𝝂 ∈ 

∑
g∈1

pg , let X1
=

(Xg, g ∈ 1) be the submatrix of X with its group indices in 1, and the following
inequalities hold

c∗ ≤
||X1

𝝂||22
n||𝝂||22 ≤ c∗ (5)

(iii) Individual-level restricted eigenvalue condition (iREC): For any Brg ∈ 2(B), suppose
that Brg ∈ 

pg×qr . Let  ⊆ {𝑗k ∶ 1 ≤ 𝑗 ≤ pg, 1 ≤ k ≤ qr} be any index set that satisfies| | ≤ s for some 0< s≤ pg × qr. Then, for any nontrivial matrix Δ ∈ pg×qr that satisfies|Δ c |1 ≤ 3|Δ |1, we have the following:

𝜅 = min
 ,Δ≠0,g∈

||XgΔ||2
n1∕2||Δ ||2 > 0.

Here, Δ is the projection of Δ on an index set  , that is, Δ is the matrix with the same
elements of Δ on coordinates  and zeros on the complementary coordinates  c.

(iv) Let d∗ = maxrg∈⊗𝜔rg, d∗ = minrg∈⊗𝜔rg for 𝜔rgs in (3). Define d = d*/d*. Define
𝜂2 = max⊂⊗||∑rg∈XgBrg||2,

r1 =

(
nc∗

√
d∗𝜂1

𝜆1d∗M2

)1∕2

, r2 =

(
nc∗𝜂2

2

𝜆2
1d∗M2

)1∕2

, c = c∗∕c∗ and

C2 = 2 + 4r2
1 + 4

√
dcr2 + 4dc.

Let 𝜎∗ = 𝜎
√

maxg∈pg. Assume that the tuning parameter, 𝜆1, in the model specified in
Eq. (3) satisfies

𝜆1 ≥ max{𝜆0, 𝜆n,G},

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11605
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where 𝜆n,G = 2𝜎∗
√

8(1 + c0)d∗d2q∗cnc∗ log(Nd ∨ an), with Nd =
∑

rg∈⊗𝜔rg, c0 ≥ 0
and an ≥ 0 satisfying d∗G∕(Nd ∨ an)1+c0 ≈ 0, and 𝜆0 = inf{𝜆 ∶ C2M2(B) + 1 ≤ q∗} with
inf ∅ = ∞. Here, a ∨ b = max{a, b}.
Let q = max{q1,… , qR} and p = max{p1,… , pG}. Assume that the tuning parameter, 𝜆2,
in the model specified in Eq. (4) satisfies

𝜆2 = 2𝜎A{log(qp)∕n}1∕2

for some constant A >
√

2.

Theorem 1. Let B
∗ be the true coefficient matrix. Assume that each of the X variables has

mean 0 and marginal variance 𝜎2 = 1. Let 𝜓max be the largest eigenvalue of X
T
X∕n and

M∗
1 (B

∗) = maxrg∈⊗M1(B∗
rg). Assume gGSC, SRC, iREC and the conditions specified in (iv)

hold. Then, with probability converging to 1 as n→∞, we have the following oracle selection
bounds for group- and individual-level signals:

M2(B̂) ≤ C2M2(B∗), (6)

M1(B̂) ≤ 64𝜓maxC2M2(B∗)M∗
1 (B

∗)∕𝜅2. (7)

When gGSC, SRC and the conditions specified in (iv) hold, Wei & Huang (2010) showed
that the group-level selection bound holds for the univariate-response group lasso. The proof of
the inequality specified in Eq. (6) follows Theorem 2.1 in (Wei & Huang 2010), except we need
to show that SRC holds for PX as, in our method, the group lasso is applied to PX instead of X

in the first stage. In fact, as each PC is a linear combination of the original X variables, we can
write PX,1

= X1
W, where W is a P×R weight matrix, R≤P, consisting of the eigenvectors

of the covariance matrix of X. Then, we have ||PX,1
𝝂||22∕{n||𝝂||22} = ||X1

W𝝂||22∕{n||𝝂||22} =||X1
W𝝂||22∕{n𝝂TWTW𝝂} = ||X1

𝝂′||22∕{n||𝝂′||22}, where 𝝂′ = W𝝂. Therefore, the SCR holds
for PX if it holds for X. The individual-level oracle selection bound identified in Eq. (7) follows
directly from the bound indicated in Eq. (6) and the multivariate lasso oracle selection bound
introduced in Theorem 2 in Li, Nan & Zhu (2015).

3. A SIMULATION STUDY

We investigated the empirical selection performance for our proposed two-stage method via
simulations. Assume that both Y and X have 50 groups, with each group containing 200 variables.

The coefficient matrix B assumes a block diagonal structure, that is, the first Y group is
associated with only the first X group, the second Y group is associated with only the second X

group, etc. Coefficients within off-diagonal blocks were set to be zeros. Half of the coefficients
within diagonal blocks were randomly generated from Unif([− 5,− 3]∪ [3, 5]), and the other half
were set to equal zero (therefore, the sparsity within important coefficient blocks was 0.5). Once
B was generated, it remained fixed in all the experiments.

We assumed that the X groups were uncorrelated. Within-group X variables were generated
from a multivariate normal distribution with zero means and a first-order autocorrelation structure
with a correlation coefficient 0.5, denoted by AR1(0.5), and unit marginal variances.

We generated the noise variables E from a multivariate normal distribution with one of the
following three correlation structures and unit marginal variances:

I. Independent Y groups: The variables within each Y group followed an AR1(0.5) correlation
structure.

DOI: 10.1002/cjs.11605 The Canadian Journal of Statistics / La revue canadienne de statistique
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II. Weakly correlated Y groups: The variables within each Y group followed an AR1(0.5)
correlation structure. The variables from different Y groups were correlated with a
compound symmetry (CS) correlation structure with a coefficient 0.1, denoted by CS(0.1).
Therefore, the overall Y correlation structure was CS(0.1)⊗AR1(0.5), where ⊗ is the
Kronecker product.

III. Moderately correlated Y groups: The variables within each Y group followed an AR1(0.5)
correlation structure. The variables from different Y groups followed a CS(0.5) correlation
structure. The overall Y correlation structure was CS(0.5)⊗AR1(0.5).

The response matrix was then generated according to Y = XB + E. For each scenario, we
generated datasets with one of three different sample sizes: n= 200, 500 and 1000.

For each simulated dataset, our proposed method was applied at each stage, followed by
stability selections. In the first stage, we used major PCs in each response/predictor group
that explained more than 80% of the total within-group variation. Each stability selection was
carried out on 100 bootstrapped datasets. Optimal tuning parameters were selected by fivefold
cross-validation for each stage of selection. Tuning parameters were then fixed in the stability
selection. The selection frequency threshold was set to be 80% for both stages. One hundred
independent experiments were repeated for each setting. We report means and empirical standard
deviations for the Sensitivity (SE) and Specificity (SP) in Table 1. The first-stage group-level
SE and SP correspond to

SE(1) =
|{rg ∶ 1 ≤ r ≤ R, 1 ≤ g ≤ G, ||𝚪̂rg||2 ≠ 0 and ||B∗

rg||2 ≠ 0}||{rg ∶ 1 ≤ r ≤ R, 1 ≤ g ≤ G, ||B∗
rg||2 ≠ 0}| and

SP(1) =
|{rg ∶ 1 ≤ r ≤ R, 1 ≤ g ≤ G, ||𝚪̂rg||2 = 0 and ||B∗

rg||2 = 0}||{rg ∶ 1 ≤ r ≤ R, 1 ≤ g ≤ G, ||B∗
rg||2 = 0}| ,

where the superscript * indicates the true values. The second-stage individual-level SE and SP
equal

SE(2) =
|{𝑗k ∶ 1 ≤ 𝑗 ≤ P, 1 ≤ k ≤ Q, 𝛽𝑗k ≠ 0 and 𝛽∗

𝑗k ≠ 0}||{𝑗k ∶ 1 ≤ 𝑗 ≤ P, 1 ≤ k ≤ Q, 𝛽∗
𝑗k ≠ 0}| and

SP(2) =
|{𝑗k ∶ 1 ≤ 𝑗 ≤ P, 1 ≤ k ≤ Q, 𝛽𝑗k = 0 and 𝛽∗

𝑗k = 0}||{𝑗k ∶ 1 ≤ 𝑗 ≤ P, 1 ≤ k ≤ Q, 𝛽∗
𝑗k = 0}| .

For comparison, we also carried out pairwise marginal linear regressions followed by
Bonferroni correction for multiple comparisons. The 𝛽𝑗ks with P-values lower than the Bonferroni
corrected threshold (5e-12) were selected as important signals. The results for the pairwise
approach are summarized in the final two columns of Table 1.

The simulation results demonstrate that our two-stage method combined with stability
selection renders very good selection results for group-structured ultrahigh-dimensional mul-
tivariate responses and multiple predictors data. It was far more powerful than the pairwise
approach. Especially for the first-stage group-level selection, our approach provided almost
perfect selection performance even when the sample size was very small. For the second-stage
individual-level selection, the selection performance improved significantly as the sample size
increased. The selection performance was similar across all three different correlation structures
for the simulated responses.
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TABLE 1: Selection results for the simulation study; the numbers in parenthesis are empirical standard
deviations.

Proposed

First stage Second stage
Correlation

structure

and setting Direct selection Stability selection Direct selection Stability selection Pairwise

n SE(1) SP(1) SE(1) SP(1) SE(2) SP(2) SE(2) SP(2) SE SP

I 200 0.98 0.98 1 0.98 0.75 0.77 0.82 0.84 7e-4 0.999

(2e−3) (2e−3) (0) (1e−3) (2e−3) (8e−4) (3e−3) (2e−3) (1e−4) (1e−6)

500 1 1 1 1 0.95 0.87 0.98 0.97 0.024 0.999

(0) (0) (0) (0) (1e−3) (3e−4) (3e−4) (5e−4) (4e−4) (1e−5)

1000 1 1 1 1 0.98 0.93 1.00 0.99 0.14 0.999

(0) (0) (0) (0) (1e−3) (2e−4) (7e−5) (4e−4) (1e−3) (3e−5)

II 200 0.98 0.97 1 0.98 0.74 0.77 0.81 0.83 7e−4 0.999

(2e−3) (2e−3) (0) (1e−3) (2e−3) (8e−4) (3e−3) (2e−3) (1e−4) (1e−6)

500 1 1 1 1 0.95 0.86 0.99 0.97 0.024 0.999

(0) (0) (0) (0) (2e−3) (4e−4) (5e−4) (6e−4) (4e−4) (1e−5)

1000 1 1 1 1 0.98 0.93 0.99 0.99 0.14 0.999

(0) (0) (0) (0) (1e−3) (1e−4) (1e−4) (3e−4) (1e−3) (2e−5)

III 200 0.98 0.96 1 0.98 0.74 0.77 0.81 0.83 7e−4 0.999

(2e−3) (2e−3) (0) (1e−3) (2e−3) (8e−4) (3e−3) (2e−3) (1e−4) (1e−6)

500 1 1 1 1 0.94 0.87 0.99 0.97 0.024 0.999

(0) (0) (0) (0) (2e−3) (3e−4) (4e−4) (5e−4) (4e−4) (1e−5)

1000 1 1 1 1 0.98 0.93 0.99 0.99 0.14 0.999

(0) (0) (0) (0) (1e−3) (1e−4) (1e−4) (4e−4) (4e−4) (3e−5)

4. ANALYSIS OF THE ADNI FDG-PET AND SNP DATA

The ADNI data used in our structured brain-GWAS analysis consist of three parts: imaging
data, genetic data and clinical data, all from the ADNI database. Samples with both imaging and
genotype data are included in the analysis, resulting in a dataset with 373 samples, including
86 AD patients, 188 MCI patients and 99 normal controls (NCs). The clinical data involve the
disease status (AD, MCI, or NC), demographic information (e.g. age and sex) and 𝜖4 allele
information for the apolipoprotein E (APOE) gene. We fit the model specified in Eq. (1) to the
ADNI PET imaging and genomic data using our proposed method.

DOI: 10.1002/cjs.11605 The Canadian Journal of Statistics / La revue canadienne de statistique
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4.1. PET Images and ROIs
The images used in our analysis are FDG-PET images, which have been widely used in
neuroimaging studies for over 20 years. FDG-PET images measure cerebral glucose metabolic
activities. From year 2003 to 2011, a total of 403 FDG-PET scans were acquired at approximately
50 different participating sites in ADNI-1 and ADNI-GO studies, including 95 AD subjects, 206
MCI subjects and 102 NC subjects. Due to missing genetic information, only 373 individuals
were included in our study. Each image contains 349,182 voxels embedded in a 160× 160× 96
three-dimensional (3D) array. All these images were preprocessed to produce a uniform isotropic
resolution.

To incorporate the brain anatomic structures, the PET images were segmented according to
the Brodmann atlas (Brodmann 2010). As a result, the voxels in each image were grouped into 106
Brodmann ROIs. Voxels not indexed by the Brodmann atlas were not considered in the analysis.
The regions on the left hemisphere are a symmetric mirror reflection of the ones located on the
right hemisphere. In the following, we use “(L)” to denote the regions on the left hemisphere and
“(R)” to denote the regions on the right hemisphere. For example, “Temporal cortex_BA20(L)”
refers to the temporal cortex region named “BA20” on the left hemisphere, and “Temporal
cortex_BA20(R)” refers to the corresponding symmetric region found on the right hemisphere.

4.2. Genotypes
The ADNI SNP data were genotyped using an Illumina 610 Quad array with more than
620,000 tag SNPs. Genotyping was performed by Polymorphic DNA Technologies. We
grouped the SNP genotypes into genes using the UCSC known gene list of NCBI36 assembly
(http://genome.ucsc.edu), with each gene containing the SNPs within its physical range plus a
flanking region of 100 KB both upstream and downstream. This resulted in a total of 29,458
genes in the 22 autosomes. For isoform genes, we took the joint regions of all the isoforms to be
the same gene.

The raw genotypes were screened by a series of quality control procedures. SNPs with missing
rates greater than 1%, heterozygous haploid and markers with Hardy-Weinberg equilibrium
P-values less than 10−6 were removed, which left a total of 564,636 SNPs in the analysis. The
missing genotypes with a missing rate under 1% were imputed by the average genotype scores
of the nonmissing genotypes.

4.3. Data Analysis
In the first-stage selection, we used the first 5 PCs in each brain ROI and the first 20 PCs or the
first several PCs that explained at least 80% of the variation, whichever was smaller, in each
gene. Most of the ROIs have more than 70% of their variations explained by their first five
PCs. Most of the genes have at least 80% of their variations explained by no more than 20 PCs.
For example, only 7 of 800 genes on chromosome 20 have less than 60% of their variations
explained by their first 20 PCs. Figure S1 in the Supplementary Materials shows the percentage
of total variation explained by the first five PCs in each ROI and the percentage of variation
explained by up to the first 20 PCs in each gene on chromosome 20. The 𝜖4 allele of the APOE
gene (APOE-𝜖4) is the most common genetic risk factor for AD (Strittmatter et al. 1993; Corder
et al. 2004). However, the ADNI genetic dataset does not contain the genotypes for the SNPs
in the APOE gene. We extracted the APOE-𝜖4 allele information score from the ADNI clinical
data and combined it with the first 20 PCs on chromosome 19.

We used the R package MSGLasso (Li, Nan & Zhu 2016) to run the multivariate group lasso
on the PC matrices. Stability selection (Meinshausen & Bühlmann 2010) was then carried out on
100 bootstrapped datasets. ROI-to-gene pairs with a stability selection frequency of at least 75%
were selected as important ROIs and genes in the first selection stage. For the APOE gene, we
used APOE-𝜖4 allele score to fit the model specified in Eq. (4) wherever APOE was selected.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11605
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Meinshausen & Bühlmann (2010) showed that the expected number V of falsely selected
variables is bounded from above by

E(V) ≤ 1
2𝜋thr − 1

q2

P
, (8)

where 𝜋thr denotes the thresholding frequency used for the selection, which in our case was
75% for the first stage and 80% for the second stage, and q represents the average number
of selected variables. In our study, the typical numbers of selected variables ranged from
tens to hundreds out of tens of thousands of variables in total, which yielded q2/P≪ 1.
Therefore, the error number per chromosome is controlled by ≪1/(2× 0.75− 1)= 2. That is,
for each ROI, in the first stage, there will be just a few falsely discovered genes across all
chromosomes.

In the second stage, we also used the MSGLasso (Li, Nan & Zhu 2016) to fit a multivariate
lasso regression on each of the selected ROI-to-gene pairs. Stability selection was then carried
out on 100 bootstrapped datasets for each ROI-to-gene pair. Voxel-to-SNP pairs with a selection
frequency greater than 80% were selected to be the important individual-level signals. Then,
we applied a multiple linear regression for each selected voxel with its selected important SNP
predictors for post-selection estimation and inference. In our ADNI data analysis, the typical
number of important SNPs selected for a voxel ranged from a few to several dozens, which is
much smaller than the sample size.

In both stages, we did not penalize Iad, Imci, Age and Sex by setting the corresponding
𝜔gr = 0 or 𝜔𝑗k = 0.

4.4. Results
Table 2 provides the list of top signals that meet both criteria of having a P-value less than
10−6 and a selection frequency exceeding 80%. The selected brain regions and strength of the
SNP effects are also illustrated in Figure 2. As there is no SNP–MCI interaction effect that
satisfies both criteria, we provide a list of top MCI interactions in Table S1 in the Supplementary
Material. Table S2 lists the top selected ROIs and voxels therein for the APOE-𝜖4 effects.

Some brain regions are identified as having either significant gene effects or gene–AD
interaction effects. For example, regions such as BA40(L), BA39(R), BA39(L), BA7(R) and
BA7(L) in the superior parietal cortices were found to be significantly associated with certain
genes or with their associations significantly modified by the AD status. On the contrary,
no genome-wide significant SNP was found in the previous pairwise brain-GWAS studies
(Stein et al. 2010a). We have confirmed some brain regions associated with genetics that
have appeared in the existing literature. For example, Mills et al. (2013) reported associations
between lipid metabolism in superior parietal cortices and alternatively spliced isoforms in RNA
transcriptome. Other identified regions that were associated with genetics or with their genetic
effects significantly modified by AD status include BA18(R), BA18(L), BA19(R), BA19(L) in
occipital cortices (Braskie, Ringman & Thompson 2011) and BA20(R), BA20(L), BA21(R),
BA21(L), BA22(R) and BA22(L) in temporal cortices (Risacher et al. 2009; Stein et al. 2010b;
Braskie, Ringman & Thompson 2011).

Some genetic findings identified in previous studies were confirmed by our brain-GWAS.
For example, Wang et al. (2013) found that inhibiting IL8RB (CXCR2) can turn down amyloid-𝛽
production and protect neural cells. Nakamura et al. (2006) found a similar effect for the
COLEC12 (SRCL) gene in AD samples. Other direct supports involving AD interactions include
Burns et al. (2011) on SAKCA (KCNMA1), Xie et al. (2010) on PRIMA, Nakamura et al. (2006)
on COLEC12 and Broer et al. (2011) on HSPA13.

DOI: 10.1002/cjs.11605 The Canadian Journal of Statistics / La revue canadienne de statistique
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FIGURE 2: The most significant SNP effects, their −log10(P−values) on voxels across the associated region
and their selective frequency pattern on the region.
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FIGURE 2: (Continued)

Some gene–AD interactions have also been identified in the literature to be associated with
other cognitive-related diseases such as autism and hearing impairment. Such genes include
AK096399 (Cannon et al. 2010), GJB2 (Lingala, Sankarathi & Penagaluru 2009), SNX29
(Teasdale & Collins 2012), MED1 (Giordano & Macaluso 2011; Wong et al. 2013) and COL9A3
(Asamura et al. 2005; Solovieva et al. 2006).

We also confirmed some gene effects on brain metabolizing. For example, CDC42EP3
encodes a certain family of guanosine triphosphate-metabolizing proteins, and the gene is
weakly expressed in the brain. PACS2 plays a role in membrane traffic with tumour necrosis
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factor-related apoptosis-inducing ligand (TRAIL)-induced apophasis (Aslan et al. 2009), which
in turn can cause human brain cell death (Nitsch et al. 2000).

Our findings also provided evidence about indirect genetic effects on certain chemical
compounds or protein translocation, which are reflected in the PET scans and may be associated
with AD. For example, Dai et al. (2013) and Sakamoto & Holman (2008) demonstrated that
TBC1D4 plays a role in the regulation of GluT4 traffic, which on the other hand is associated with
AD (Talbot et al. 2012; Yang, Li & Liu 2013). Nolte et al. (2006) and Lu, He & Zhong (2007)
have reported a chain of relationships of the HOXD4 gene to PAX6 protein in AD.

There are also several novel signals that have not previously been reported in the literature,
such as associations between BC007399 and BA39(R) in the superior parietal cortex, between
GALNT4 and BA19(L) in the occipital cortex and between RIN2 and CERHEM(L).

5. DISCUSSION

The overall computational cost of our two-stage approach is lower than that of the pairwise
approaches (Stein et al. 2010a; Ge et al. 2012) as our method removes the unimportant
ROI-to-gene signal blocks first and only focuses on the selected ROI-to-gene blocks in the
downstream analysis stages. To further reduce the computational time, we parallelized the
computational jobs on multicore computing clusters. In addition, our approach has more power
due to the integration of the brain and genome grouping structures. In Stein et al. (2010a), no
significant voxel-to-SNP signals were found due to the huge number of multiple comparisons
that were carried out.

We recognize that post-selection inference is biased. Simultaneous selection, estimation and
inference have been studied recently (Berk et al. 2013; van de Geer et al. 2014). Kuchibhotla
et al. (2020) also provide an upper bound for post-selection inference P-values when taking into
account the selection bias. These enhancements of our proposed method will be investigated in
future studies.
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